Abstract

In this paper, an adaptive output feedback fault tolerant control (FTC) based on actuator switching is proposed for a class of single-input single-output (SISO) nonlinear systems with uncertain parameters and possible actuator failures, for which a set of healthy actuators are available as backups. While high-gain K-filters are utilized to estimate the unmeasured states, an adaptive control law is designed to compensate for the parameter uncertainties and certain actuator failures, an actuator switching strategy based on a set of appropriately designed monitoring functions (MFs) is proposed to tackle those serious actuator failures, make tracking error satisfy prescribed transient and steady-state performance and guarantee closed-loop signal boundedness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call