Abstract
This paper considers augmentation of an existing inertial damping mechanism by neural network-based adaptive control, for controlling a micromanipulator that is serially attached to a macromanipulator. The approach is demonstrated using an experimental test bed in which the micromanipulator is mounted at the tip of a cantilevered beam that resembles a macromanipulator with its joint locked. The inertial damping control combines acceleration feedback with position control for the micromanipulator so as to simultaneously suppress vibrations caused by the flexible beam while achieving precise tip positioning. Neural network-based adaptive elements are employed to augment the inertial damping controller when the existing control system becomes deficient due to modeling errors and uncertain operating conditions. There were several design challenges that had to be faced from an adaptive control perspective. One challenge was the presence of a nonminimum phase zero in an output feedback adaptive control design setting in which the regulated output variable has zero relative degree. Other challenges included flexibility in the actuation devices, lack of control degrees of freedom, and high dimensionality of the system dynamics. In this paper we describe how we overcame these difficulties by modifying a previous augmenting adaptive approach to make it suitable for this application. Experimental results are provided to illustrate the effectiveness of the augmenting approach to adaptive output feedback control design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.