Abstract
This paper presents the distributed control design for a class of fractional-order strict-feedback nonlinear multi-agent systems in the presence of unknown dynamics by employing backstepping strategy. Considering that the information of followers’ states are not fully measurable for feedback design, the fractional-order infinite-dimension neural-network state observer is introduced to estimate the unavailable states. The infinite-dimension neuroadaptive laws are also proposed to eliminate the undesirable effects of the unknown nonlinear functions. Besides, based on the Lyapunov fractional-order stability approach and graph theory, unlike the existing results, a distributed neural adaptive observer-based control architecture is designed to ensure that all the closed-loop network signals are ultimately bounded. Finally, a simulation example is given to demonstrate the validity of the proposed control method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.