Abstract
Computational methods are presented for spline smoothing that make it practical to compute smoothing splines of degrees other than just the standard cubic case. Specifically, an order n algorithm is developed that has conceptual and practical advantages relative to classical methods. From a conceptual standpoint, the algorithm uses only standard programming techniques that do not require specialized knowledge about spline functions, methods for solving sparse equation systems or Kalman filtering. This allows for the practical development of methods for adaptive selection of both the level of smoothing and degree of the estimator. Simulation experiments are presented that show adaptive degree selection can improve estimator efficiency over the use of cubic smoothing splines. Run-time comparisons are also conducted between the proposed algorithm and a classical, band-limited, computing method for the cubic case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.