Abstract

Image degradation plays a major problem in many image processing applications. Due to blurring, the quality of an image is degraded and there will be a reduction in bandwidth. Blur in an image is due to variations in atmospheric turbulence, focal length, camera settings, etc. Various types of blurs include Gaussian blur, Motion blur, Out-of-focus blur. The effect of noise along with blur further corrupts the captured image. Many techniques have evolved to deblur the degraded image. The leading approach to solve various degraded images are either based on discriminative learning models or on optimization models. Each method has its own advantages and disadvantages. Learning by discriminative methods is faster but restricted to a specific task whereas optimization models handle flexibly but consume more time. Integrating optimization models suitably by learning with discriminative manner results in effective image restoration. In this paper, a set of effective and fast Convolutional Neural Networks (CNNs) are employed to deblur the Gaussian, motion and out-of-focus blurred images that integrate with optimization models to further avoid noise effects. The proposed methods work more efficiently for applications with low-level vision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.