Abstract

This paper is concerned with optimization or minimization problems that are governed by operator equations, such as partial differential or integral equations, and thus are naturally formulated in an infinite dimensional function space V. We first construct a prototype algorithm of steepest descent type in V and prove its convergence. By using a Riesz basis in V we can transform the minimization problem into an equivalent one posed in a sequence space of type $\ell_p$. We convert the prototype algorithm into an adaptive method in $\ell_p$. This algorithm is shown to be convergent under mild conditions on the parameters that appear in the algorithm. Under more restrictive assumptions we are also able to establish the rate of convergence of our algorithm and prove that the work/accuracy balance is asymptotically optimal. Finally, we give two particular examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.