Abstract

Existing adaptive optimal tracking controllers for linear continuous-time systems rely on a formulation that hinders learning control policies for general reference trajectories; generalizing approaches are currently limited to discrete-time systems. In addition, existing results usually rely on globally discounted objective functions. We demonstrate that global discounting potentially leads to unstable controllers and propose a partially discounted objective function instead, which we show to have a unique, globally asymptotically stabilizing solution in the linear-quadratic case. Based on this result, we present a model-free adaptive tracking control architecture for linear continuous-time systems. Once trained, the controller can be used to track flexible reference trajectories. We demonstrate the functionality of our approach with an example.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call