Abstract

Results are presented from the optimal operation of a fully automated robotic liquid handling station where parallel experiments are performed for calibrating a kinetic fermentation model. To increase the robustness against uncertainties and/or wrong assumptions about the parameter values, an iterative calibration and experiment design approach is adopted. Its implementation yields a stepwise reduction of parameter uncertainties together with an adaptive redesign of reactor feeding strategies whenever new measurement information is available. The case study considers the adaptive optimal design of 4 parallel fed-batch strategies implemented in 8 mini-bioreactors. Details are given on the size and complexity of the problem and the challenges related to calibration of over-parameterized models and scarce and non-informative measurement data. It is shown how methods for parameter identifiability analysis and numerical regularization can be used for monitoring the progress of the experimental campaigns in terms of generated information regarding parameters and selection of the best fitting parameter subset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.