Abstract

Electrical resistance tomography (ERT) is an inferential imaging technique that has shown promising results for enabling large-area tactile sensors constructed from a piezoresistive sheet. The performance of such sensors is improved by increasing the number of electrodes, but the number of measurements and the computational cost also increase. In this article, we propose a new measurement algorithm for ERT-based tactile sensors: it adaptively changes the measurement pattern to be optimal for the present external stimulus. Regions of normal pressure are first detected by a base measurement pattern that maximizes the distinguishability of local conductivity changes. When a new contact is detected, a set of local patterns is selectively recruited near the pressed region to acquire more detailed information. For fast and parallel execution, the proposed algorithm is implemented with a field-programmable gate array. It is validated through indentation experiments on an ERT-based sensor that has 32 electrodes. The optimized base pattern of 100 measurements enabled a frame rate five times faster than before. Transmitting only detected contact events reduced the idle data rate to 0.5% of its original value. The pattern adapted to new contacts with a latency of only 80 μs and an accuracy of 99.5%, enabling efficient, high-quality real-time reconstruction of complex multicontact conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.