Abstract
Space debris in low Earth orbit below 1500km is becoming an increasing threat to satellites and spacecrafts. Radar and laser tracking are currently used to monitor the orbits of thousands of space debris and active satellites are able to use this information to manoeuvre out of the way of a predicted collision. However, many satellites are not able to manoeuvre and debris-on debris collisions are becoming a signicant contributor to the growing space debris population. The removal of the space debris from orbit is the preferred and more definitive solution. Space debris removal may be achieved through laser ablation, whereby a high power laser corrected with an adaptive optics system could, in theory, allow ablation of the debris surface and so impart a remote thrust on the targeted object. The goal of this is to avoid collisions between space debris to prevent an exponential increase in the number of space debris objects. We are developing an experiment to demonstrate the feasibility of laser ablation for space debris removal. This laser ablation demonstrator utilises a pulsed sodium laser to probe the atmosphere ahead of the space debris and the sun reflection of the space debris is used to provide atmospheric tip{tilt information. A deformable mirror is then shaped to correct an infrared laser beam on the uplink path to the debris. We present here the design and the expected performance of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.