Abstract

Beam spread in turbulent biological tissues is examined when the tissue is excited with a collimated Gaussian laser beam. Adaptive optics correction is applied to the beam spread in the form of piston only (P Only), tilt only (T Only), piston+tilt (P+T), and the reduction in the beam spread is evaluated as compared to the no adaptive optics (No AO) corrected beam spread. No AO and adaptive optics corrected beam spread are expressed for various biological tissue types, against the variations in the strength coefficient of the refractive-index fluctuations, source size, small length-scale factor of turbulence, tissue length, fractal dimension, characteristic lengths of heterogeneity and the wavelength. For the examined tissue types of liver parenchyma (mouse), intestinal epithelium (mouse), upper dermis (human) and deep dermis (mouse), No AO beam spread and the adaptive optics corrected beam spread are found to increase as the strength coefficient of the refractive-index fluctuations, tissue length, fractal dimension, the characteristic lengths of heterogeneity increase, and to decrease as the source size, small length-scale factor, wavelength increase. Reduction ratio of P+T correction is almost the same for all the evaluated cases which is 74%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.