Abstract
For orbital angular momentum (OAM) beams, we show that the twin-image problem in the single-intensity-measurement hybrid input-output algorithm (HIOA) severely impairs the phase retrieval performance and propose a very simple method to overcome this problem. First, we introduce the principle of the single-intensity-measurement HIOA together with the underlying reason for the twin-image problem and propose a new scheme of the HIOA using a pair of complementary binary masks (CBMs) to overcome the twin-image problem. To verify the usefulness of the proposed CBM-HIOA in the OAM free-space optical system, a wave-optics simulation is used to produce relatively realistic atmospheric turbulence, and the turbulence-induced distorted phase of the probe Gaussian beam is retrieved to compensate for the phase distortion of OAM beams. The suppression of the bidirectional and stagnant convergence caused by the twin-image problem, the compensation of the turbulence-induced distorted phase of the OAM beams, and the influence of different CBM shapes are studied in detail by numerical simulations. The corresponding numerical results show the feasibility and efficacy of the CBM-HIOA used for the adaptive optics compensation of OAM beams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.