Abstract

In adaptive optics systems, the precision wavefront sensor determines the closed-loop correction effect. The accuracy of the wavefront sensor is severely reduced when light energy is weak, while the real-time performance of wavefront sensorless adaptive optics systems based on iterative algorithms is poor. The wavefront correction algorithm based on deep learning can directly obtain the aberration or correction voltage from the input image light intensity data with better real-time performance. Nevertheless, manually designing deep-learning models requires a multitude of repeated experiments to adjust many hyperparameters and increase the accuracy of the system. A wavefront sensorless system based on convolutional neural networks with automatic hyperparameter optimization was proposed to address the aforementioned issues, and networks known for their superior performance, such as ResNet and DenseNet, were constructed as constructed groups. The accuracy of the model was improved by over 26%, and there were fewer parameters in the proposed method, which was more accurate and efficient according to numerical simulations and experimental validation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call