Abstract

Bloom filters are widely used to perform fast approximate membership checking in networking applications. The main limitation of Bloom filters is that they suffer from false positives that can only be reduced by using more memory. We suggest to take advantage of a common repetition in the identity of queried elements to adapt Bloom filters for avoiding false positives for elements that repeat upon queries. In this paper, one memory access Bloom filters are used to design an adaptation scheme that can effectively remove false positives while completing all queries in a single memory access. The proposed filters are well suited for scenarios on which the number of memory bits per element is low and thus complement existing adaptive cuckoo filters that are not efficient in that case. The evaluation results using packet traces show that the proposed adaptive Bloom filters can significantly reduce the false positive rate in networking applications with the single memory access. In particular, when using as few as four bits per element, false positive rates below 5% are achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.