Abstract

This paper extends the application of neurocontrol approaches to a new class of nonlinear systems diffeomorphic to output feedback nonlinear systems with unmeasured states. A neural-based adaptive observer is introduced for state estimation as well as system identification using only output measurements during online operation. System identification is achieved via the online approximation of a priori unknown functions. The controller is designed using the backstepping control design procedure. Leakage terms in the adaptive laws and nonlinear damping terms in the backstepping controller are introduced to prevent instability from arising due to the inherent approximation error. A primary benefit of the online function approximation is the reduction of approximation errors, which allows reduction of both the observer and controller gains. A semi-global stability analysis for the proposed approach is provided and the feasibility is investigated by an illustrative simulation example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call