Abstract

We propose an adaptive multiscale method to improve the efficiency and the accuracy of numerical computations by combining numerical homogenization and domain decomposition for modeling flow and transport. Our approach focuses on minimizing the use of fine scale properties associated with advection and diffusion/dispersion. Here a fine scale flow and transport problem is solved in subdomains defined by a transient region where spatial changes in transported species concentrations are large while a coarse scale problem is solved in the remaining subdomains. Away from the transient region, effective macroscopic properties are obtained using local numerical homogenization. An Enhanced Velocity Mixed Finite Element Method (EVMFEM) as a domain decomposition scheme is used to couple these coarse and fine subdomains [1]. Specifically, homogenization is employed here only when coarse and fine scale problems can be decoupled to extract temporal invariants in the form of effective parameters. In this paper, a number of numerical tests are presented for demonstrating the capabilities of this adaptive numerical homogenization approach in upscaling flow and transport in heterogeneous porous medium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.