Abstract

DC-DC converters have been receiving great attention for their extensive use in a myriad of applications starting with basic calculators to photovoltaic systems to sophisticated weaponry. Several control methods were developed for DCDC converters control mostly with asymptotic convergence. Synergetic control are a proven robust controllers approach and will be used here in a so called terminal scheme to achieve finite time convergence thus enhancing the already established technique robustness. An adaptive non-singular terminal synergetic control approach to handle uncertainties is provided resulting in enhancing robustness as well as a better transient performance compared to terminal synergetic control. Lyapounov synthesis is adopted to assure controlled system stability. Furthermore, a PSO algorithm will be used to optimize controller's parameters using an ITAE criterion. Simulation of terminal synergetic control of a DC-DC converter is carried out for different operating conditions and results are compared to terminal synergetic control performance, that which demonstrate the effectiveness and feasibility of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.