Abstract

In this study, an adaptive nonsingular terminal sliding mode control technique according to the barrier function is designed for the performance improvement and robust stability of nonlinear systems with outdoor disturbances. For this reason, a novel nonlinear sliding surface is presented based on the states of the system. The nonlinear sliding surface forces the states of the system to converge from initial conditions to zero. Subsequently, a non-singular terminal sliding control scheme is advised for the purpose of finite-time stability of the nonlinear switching surface. Finite-time stabilization of the non-singular terminal sliding surface is verified by the Lyapunov theory. For improvement of the system performance against exterior perturbation, the barrier function adaptive technique is employed to estimate the unknown upper bounds of the exterior disturbance. Finally, the advantage and productivity of the recommended control method is investigated based on the simulation results. In the simulation part, the plasma torch jerk chaotic system is considered as a case study, such that the obtained results are given in different scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call