Abstract

In order to improve the efficiency of human–robot interaction (HRI), it is necessary to carry out research on precise control of the manipulator. In this paper, an adaptive non-singular fast terminal sliding mode control scheme is proposed for robot manipulators to solve the trajectory tracking problem with model uncertainty and external disturbances. At first, a novel non-singular fast terminal sliding mode surface is proposed, and by introducing an auxiliary function, the singularity problem caused by the inverse of the error-related matrix could be avoided in the controller design process. Then, the controller is developed by using Lyapunov synthesis. A robust adaptive strategy is used to deal with lumped uncertainty, with an adaptive update law designed to compensate for the upper bound of lumped uncertainty whose upper bound is prior unknown. Finally, a two-link robot manipulators as a simulation example is given to illustrate the effectiveness of the proposed scheme. Compared with other similar algorithms, the proposed adaptive non-singular fast terminal sliding mode control scheme has higher efficiency and smaller computational complexity for the reason that no piecewise continuous function is needed to be constructed during the controller design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.