Abstract

Learning density estimation is important in probabilistic modeling and reasoning with uncertainty. Since B-spline basis functions are piecewise polynomials with local support, density estimation with B-splines shows its advantages when intensive numerical computations are involved in the subsequent applications. To obtain an optimal local density estimation with B-splines, we need to select the bandwidth (i.e., the distance of two adjacent knots) for uniform B-splines. However, the selection of bandwidth is challenging, and the computation is costly. On the other hand, nonuniform B-splines can improve on the approximation capability of uniform B-splines. Based on this observation, we perform density estimation with nonuniform B-splines. By introducing the error indicator attached to each interval, we propose an adaptive strategy to generate the nonuniform knot vector. The error indicator is an approximation of the information entropy locally, which is closely related to the number of kernels when we construct the nonuniform estimator. The numerical experiments show that, compared with the uniform B-spline, the local density estimation with nonuniform B-splines not only achieves better estimation results but also effectively alleviates the overfitting phenomenon caused by the uniform B-splines. The comparison with the existing estimation procedures, including the state-of-the-art kernel estimators, demonstrates the accuracy of our new method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.