Abstract

The slewing motion of a truss arm driven by a V-gimbaled control-moment gyro is studied. The V-gimbaled control-moment gyro consists of a pair of gyros that must precess synchronously. For open-loop slewing motion control, the controller design problem is simplified into finding a feedback controller to steer the two gyros to synchronously track a specific command. To improve the synchronization performance, the integral of synchronization error is introduced into the design as an additional state variable. Based on the second method of Lyapunov, an adaptive nonlinear feedback controller is designed. For more accurate but complicated closed-loop slewing motion control, the feedback linearization technique is utilized to partially linearize the nonlinear nominal model, where two specific output functions are chosen to satisfy the system tracking and synchronization requirements. The system tracking dynamics are bounded by properly determining system indices and command signals. For the partially linearized system, the backstepping tuning function design approach is employed to design an adaptive nonlinear controller. The dynamic order of the adaptive controller is reduced to its minimum. The performance of the proposed controllers is verified by simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call