Abstract
In this paper, we consider the restoration of images with signal-dependent noise. The filter is noise smoothing and adapts to local changes in image statistics based on a nonstationary mean, nonstationary variance (NMNV) image model. For images degraded by a class of uncorrelated, signal-dependent noise without blur, the adaptive noise smoothing filter becomes a point processor and is similar to Lee's local statistics algorithm [16]. The filter is able to adapt itself to the nonstationary local image statistics in the presence of different types of signal-dependent noise. For multiplicative noise, the adaptive noise smoothing filter is a systematic derivation of Lee's algorithm with some extensions that allow different estimators for the local image variance. The advantage of the derivation is its easy extension to deal with various types of signal-dependent noise. Film-grain and Poisson signal-dependent restoration problems are also considered as examples. All the nonstationary image statistical parameters needed for the filter can be estimated from the noisy image and no a priori information about the original image is required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.