Abstract

This research offers a comprehensive exploration of three pivotal aspects within the realm of fiber optics and piezoelectric materials. The study delves into the influence of voltage variation on piezoelectric displacement, examines the effects of bending multimode fiber (MMF) on data transmission, and scrutinizes the performance of an autoencoder in MMF image reconstruction with and without additional noise. To assess the impact of voltage variation on piezoelectric displacement, experiments were conducted by applying varying voltages to a piezoelectric material, meticulously measuring its radial displacement. The results revealed a notable increase in displacement with higher voltage, presenting implications for fiber stability and overall performance. Additionally, the investigation into the effects of bending MMF on data transmission highlighted that the bending process causes the fiber to become leaky and radiate power radially, potentially affecting data transmission. This crucial insight emphasizes the necessity for further research to optimize data transmission in practical fiber systems. Furthermore, the performance of an autoencoder model was evaluated using a dataset of MMF images, in diverse scenarios. The autoencoder exhibited impressive accuracy in reconstructing MMF images with high fidelity. The results underscore the significance of ongoing research in these domains, propelling advancements in fiber optic technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call