Abstract
In this paper, the adaptive neural network output-feedback stabilization problem is investigated for a class of stochastic nonlinear strict-feedback systems. The nonlinear terms, which only depend on the system output, are assumed to be completely unknown, and only an NN is employed to compensate for all unknown upper bounding functions, so that the designed controller is more simple than the existing results. It is shown that, based on the backstepping method and the technique of nonlinear observer design, the closed-loop system can be proved to be asymptotically stable in probability. The simulation results demonstrate the effectiveness of the proposed control scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.