Abstract

This paper presents an adaptive neural network (NN) control approach for an electro-hydraulic system. The friction and internal leakage are nonlinear uncertainties, and the states in the considered electro-hydraulic system are fully constrained. In the control design, the NNs are utilized to approximate the nonlinear uncertainties. Then, by constructing barrier Lyapunov functions and based on the adaptive backstepping control design technique, a novel adaptive NN control scheme is formulated. It has been proven that the developed adaptive NN control scheme can sustain the controlled electro-hydraulic system to be stable and make the system output track the desired reference signal. Furthermore, the system states do not surpass the given bounds. The computer simulation results verify the effectiveness of the proposed controller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.