Abstract

By using on Adaptive Neuro-Fuzzy Inference System (ANFIS) as well as experimental data, a model was established for the prediction of the thermal conductivity ratio of alumina (Al2O3)-water nanofluids. In the ANFIS the target parameter was the thermal conductivity ratio, and the nanoparticle volume concentration, temperature and Al2O3 nanoparticle size were considered as the input (design) parameters. In the development of the model, the empirical data was divided into train and test sections. The ANFIS network was instructed by eighty percent of the experimental data and the remaining data (twenty percent) were considered for benchmarking. The results which were obtained by the proposed Adaptive Neuro-Fuzzy Inference System (ANFIS) model were in good agreement with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.