Abstract
The dynamics of robot manipulators are highly nonlinear with strong couplings existing between joints and are frequently subjected to structured and unstructured uncertainties. Fuzzy Logic Controller can very well describe the desired system behavior with simple if-then relations owing the designer to derive if-then rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). This paper presents the control of six degrees of freedom robot arm (PUMA Robot) using Adaptive Neuro Fuzzy Inference System (ANFIS) based PD plus I controller. Numerical simulation using the dynamic model of six DOF robot arm shows the effectiveness of the approach in trajectory tracking problems. Comparative evaluation with respect to PID, Fuzzy PD+I controls are presented to validate the controller design. The results presented emphasize that a satisfactory tracking precision could be achieved using ANFIS controller than PID and Fuzzy PD+I controllers Abstract The dynamics of robot manipulators are highly nonlinear with strong couplings existing between joints and are frequently subjected to structured and unstructured uncertainties. Fuzzy Logic Controller can very well describe the desired system behavior with simple if-then relations owing the designer to derive if-then rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). This paper presents the control of six degrees of freedom robot arm (PUMA Robot) using Adaptive Neuro Fuzzy Inference System (ANFIS) based PD plus I controller. Numerical simulation using the dynamic model of six DOF robot arm shows the effectiveness of the approach in trajectory tracking problems. Comparative evaluation with respect to PID, Fuzzy PD+I controls are presented to validate the controller design. The results presented emphasize that a satisfactory tracking precision could be achieved using ANFIS controller than PID and Fuzzy PD+I controllers Abstract The dynamics of robot manipulators are highly nonlinear with strong couplings existing between joints and are frequently subjected to structured and unstructured uncertainties. Fuzzy Logic Controller can very well describe the desired system behavior with simple if-then relations owing the designer to derive if-then rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). This paper presents the control of six degrees of freedom robot arm (PUMA Robot) using Adaptive Neuro Fuzzy Inference System (ANFIS) based PD plus I controller. Numerical simulation using the dynamic model of six DOF robot arm shows the effectiveness of the approach in trajectory tracking problems. Comparative evaluation with respect to PID, Fuzzy PD+I controls are presented to validate the controller design. The results presented emphasize that a satisfactory tracking precision could be achieved using ANFIS controller than PID and Fuzzy PD+I controllers
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Engineering Science and Technology Review
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.