Abstract
In this paper, an online identification algorithm for instrumental variable-based evolving neuro-fuzzy modeling applied to dynamic systems in noisy environment is proposed. The adopted methodology is based on neuro-fuzzy inference system with Takagi–Sugeno evolving structure, which employs an adaptive distance norm based on the maximum likelihood criterion with instrumental variable recursive parameter estimation. The application and performance analysis of the proposed algorithm is based on black-box modeling of a 2DOF Helicopter with errors in variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Control, Automation and Electrical Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.