Abstract
Indoor localization is a basic process in Wireless Sensor Networks (WSN) monitoring. This paper presents a new approach for localization of mobile nodes in WSNs. The proposed approach is based on the design of an adaptive fuzzy localization system. First proposed contribution is to consider the rooms of the target environment as a fuzzy sets made by adjacent zones described by a Fuzzy Location Indicator (FLI). FLI provides a fuzzy linearization of the building map hence the creation of a fuzzy linguistic model of the system. Fingerprints of the Radio Signal Strength Indicators (RSSI) are collected from different anchors according to each FLI. A Sugeno type-0 fuzzy inference system is proposed and submitted to a supervised learning through the neuro-fuzzy ANFIS algorithm. Simulation results as well as experimentations in Cynapsys company premises have proved that a good learning process leads to high success rate. Finally, a comparative study with two fuzzy localization systems proved the lower localization error average of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.