Abstract

Accurate predictive modelling is an essential prerequisite for optimization and control of production in modern manufacturing environments. In this paper, an adaptive neuro-fuzzy inference system (ANFIS) model was developed to predict the surface roughness in high speed turning of AISI P 20 tool steel. Experiments were designed and performed to collect the training and testing data for the proposed model based on orthogonal array. For decreasing the complexity of the ANFIS structure, principal component analysis (PCA) was used to deal with the experimental data. The comparison between predictions and experimental data showed that the proposed method was both effective and efficient for modelling surface roughness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.