Abstract
This paper is concerned with the tracking control problem for a class of switched nonaffine stochastic nonlinear systems in completely nonaffine form and nonlower-triangular structure, with unknown backlash-like hysteresis involved, and a novel adaptive neural tracking control scheme, based on backstepping design, is proposed. To eliminate the problem of complexity explosion, dynamic surface control (DSC) technique is incorporated into the backstepping design procedure, such that the process of controller design becomes much simpler. High-order neural networks (HONNs) are employed to approximate the lumped unknown nonlinear functions, and only one adaptive parameter is required to be updated. Stability analysis shows that the proposed scheme guarantees all the closed-loop error signals are semi-globally uniformly ultimately bounded in the 4th-moment or mean square, and the system output can converge to an arbitrary small neighbourhood of the given trajectory. Finally, simulation results are presented to verify the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.