Abstract

This paper investigates the problem of adaptive neural control design for a class of single-input single-output strict-feedback stochastic nonlinear systems whose output is an known linear function. The radial basis function neural networks are used to approximate the nonlinearities, and adaptive backstepping technique is employed to construct controllers. It is shown that the proposed controller ensures that all signals of the closed-loop system remain bounded in probability, and the tracking error converges to an arbitrarily small neighborhood around the origin in the sense of mean quartic value. The salient property of the proposed scheme is that only one adaptive parameter is needed to be tuned online. So, the computational burden is considerably alleviated. Finally, two numerical examples are used to demonstrate the effectiveness of the proposed approach. Copyright © 2012 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.