Abstract

This paper proposes a combination between a neural network and an adaptive sliding mode control for trajectory tracking control of a 3-DOF planar parallel manipulator. It has a complicated dynamic model, including modelling uncertainties, frictional uncertainties and external disturbances. The proposed control algorithm is to use a PID sliding mode surface, an adaptive sliding mode controller with a neural network to overcome the drawback of the traditional sliding mode controllers, such as slow response rate with variation of uncertainties and external disturbances, chattering, and upper bound values of undefined dynamics which affects system performance, high wear of moving mechanical parts and high heat losses in power circuits. The radial basis function neural network is designed to compensate for uncertainties and external disturbances, which allows small switching gain. Hence, the chattering can be significantly reduced. In addition, an adaptive control law is used to adaptively converge small switching gains of the sliding mode controller as the neural network reduces model uncertainties. The effectiveness of the proposed control strategy is demonstrated by simulations which are conducted by using the combination of Sim-Mechanics and SolidWorks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call