Abstract

This paper first focuses on the problem of adaptive output feedback stabilization for a more general class of stochastic nonlinear time-delay systems with unknown control directions. By using a linear state transformation, the original system is transformed to a new system for which control design becomes feasible. Then a novel adaptive neural network (NN) output feedback control strategy, which only contains one adaptive parameter, is developed for such systems by combining the input-driven filter design, the backstepping technique, the NN's parameterization, the Nussbaum gain function method and the Lyapunov---Krasovskii approach. The proposed control design guarantees that all signals in the closed-loop systems are 4-moment (or 2-moment) semi-globally uniformly bounded. Finally, two simulation examples are given to demonstrate the effectiveness and the applicability of the proposed control design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call