Abstract

This article addresses the finite-time optimal control problem for a class of nonlinear systems whose powers are positive odd rational numbers. First of all, a finite-time controller, which is capable of ensuring the semiglobal practical finite-time stability for the closed-loop systems, is developed using the adaptive neural networks (NNs) control method, adding one power integrator technique and backstepping scheme. Second, the corresponding design parameters are optimized, and the finite-time optimal control property is obtained by means of minimizing the well-defined and designed cost function. Finally, a numerical simulation example is given to further validate the feasibility and effectiveness of the proposed optimal control strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.