Abstract
Considering the uncertain nonstrict nonlinear system with dead-zone input, an adaptive neural network (NN)-based finite-time online optimal tracking control algorithm is proposed. By using the tracking errors and the Lipschitz linearized desired tracking function as the new state vector, an extended system is present. Then, a novel Hamilton-Jacobi-Bellman (HJB) function is defined to associate with the nonquadratic performance function. Further, the upper limit of integration is selected as the finite-time convergence time, in which the dead-zone input is considered. In addition, the Bellman error function can be obtained from the Hamiltonian function. Then, the adaptations of the critic and action NN are updated by using the gradient descent method on the Bellman error function. The semiglobal practical finite-time stability (SGPFS) is guaranteed, and the tracking errors convergence to a compact set by zero in a finite time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.