Abstract
This paper focuses on grid performance optimization in large scale workflow applications with an intelligent workflow scheduling mechanism. Utility Management Systems (UMS) are managing very large numbers of workflows with very high resource requirements. This paper proposes a UMS scheduling architecture which dynamically executes a scheduling algorithm using near real-time feedback about the current status of grid nodes. Workflow scheduling was performed with an artificial neural network (ANN). The network was trained in a system with three workflows. The case study presented in this paper shows results achieved in a three workflow system, as well as results achieved in a five workflow system where an adaptive ANN was used. The results testify that significant improvement of overall execution time can be achieved by adapting weights in the neural network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.