Abstract

In this paper, a robust adaptive neural network (NN) backstepping output feedback control approach is proposed for a class of uncertain stochastic nonlinear systems with unknown nonlinear functions, unmodeled dynamics, dynamical uncertainties and without requiring the measurements of the states. The NNs are used to approximate the unknown nonlinear functions, and a filter observer is designed for estimating the unmeasured states. To solve the problem of the dynamical uncertainties, the changing supply function is incorporated into the backstepping recursive design technique, and a new robust adaptive NN output feedback control approach is constructed. It is mathematically proved that the proposed control approach can guarantee that all the signals of the resulting closed-loop system are semi-globally uniformly ultimately bounded in probability, and the observer errors and the output of the system converge to a small neighborhood of the origin by choosing design parameters appropriately. The simulation example and comparison results further justify the effectiveness of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call