Abstract

The dynamics of air manifold and fuel injection of the spark ignition engines are severely nonlinear. This is reflected in nonlinearities of the model parameters in different regions of the operating space. Control of the engines has been investigated using observer-based methods or sliding-mode methods. In this paper, the model predictive control (MPC) based on a neural network model is attempted for air–fuel ratio, in which the model is adapted on-line to cope with nonlinear dynamics and parameter uncertainties. A radial basis function (RBF) network is employed and the recursive least-squares (RLS) algorithm is used for weight updating. Based on the adaptive model, a MPC strategy for controlling air–fuel ratio is realised to a nonlinear simulation of the engines, and its control performance is compared with that of a conventional PI controller. A reduced Hessian method, a new developed sequential quadratic programming (SQP) method for solving nonlinear programming (NLP) problems, is implemented to speed up the nonlinear optimisation in MPC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.