Abstract
In this article, subject to time-varying delay and uncertainties in dynamics, we propose a novel adaptive fixed-time control strategy for a class of nonlinear bilateral teleoperation systems. First, an adaptive control scheme is applied to estimate the upper bound of delay, which can resolve the predicament that delay has significant impacts on the stability of bilateral teleoperation systems. Then, radial basis function neural networks (RBFNNs) are utilized for estimating uncertainties in bilateral teleoperation systems, including dynamics, operator, and environmental models. Novel adaptation laws are introduced to address systems' uncertainties in the fixed-time convergence settings. Next, a novel adaptive fixed-time neural network control scheme is proposed. Based on the Lyapunov stability theory, the bilateral teleoperation systems are proved to be stable in fixed time. Finally, simulations and experiments are presented to verify the validity of the control algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.