Abstract

This article investigates the adaptive neural network (NN) finite-time output tracking control problem for a class of multi-input and multi-output (MIMO) uncertain nonlinear systems whose powers are positive odd rational numbers. Such designs adopt NNs to approximate unknown continuous system functions, and a controller is constructed by combining backstepping design and adding a power integrator technique. By constructing new iterative Lyapunov functions and using finite-time stability theory, the closed-loop stability has been achieved, which further verifies that the entire system possesses semiglobal practical finite-time stability (SGPFS), and the tracking errors converge to a small neighborhood of the origin within finite time. Finally, a simulation example is given to elaborate the effectiveness and superiority of the developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.