Abstract
AbstractAn adaptive neural network (NN) based optimal saturation control scheme is investigated for single‐phase grid‐connected photovoltaic (PV) systems by incorporating dynamic surface control (DSC) and adaptive dynamic programming (ADP) based on the backstepping control design framework. For each backstepping step, a critic‐actor architecture is constructed via reinforcement learning (RL), and the PV system is optimized according to the cost function in the architecture. Due to the nonlinearity, it is difficult to solve the Hamilton–Jacobi–Bellman (HJB) equation. The neural networks (NNs) are employed to approximate the solution of the HJB equation such that the optimal virtual control and the actual controller are obtained. By considering control input symmetric saturation nonlinearity link, constraints on pulse width modulation (PWM) are ensured. On this basis, the combination of backstepping control design and dynamic surface technique is used to overcome the shortcomings of “differential explosion” and simplify calculations. Based on the Lyapunov method, the stability analysis proves that all signals of the closed‐loop PV systems are semiglobally uniformly ultimately bounded (SGUUB). Simulation experiments and comparative results are given to verify the efficacy of the studied control strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.