Abstract

Abstract This paper studies the trajectory tracking control problem of second-order underactuated system subject to system uncertainties and prescribed performance constraints. By combining radial basis function neural networks (RBFNNs) with input–output linearization methods, an adaptive neural network-based control approach is proposed and the adaptive laws are given through Lyapunov method and Taylor expansion linearization approach. The main contributions of this paper are that: (1) by introducing weight performance function and transformation function, the states never violate the prescribed performance constraints; (2) the control scheme takes the unknown control gain direction into consideration and the singular problem of control design can be avoided; (3) through rigorously stability analysis, all signal of closed-loop system are proved to be uniformly ultimately bounded. The effectiveness of the proposed control scheme was verified by comparative simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.