Abstract

This paper proposes a novel architecture for bilateral teleoperation with a master and slave nonlinear robotic systems under constant communication delays. We basically extend the passivity based coordination architecture to improve position and force tracking and consequently transparency in the face of offset in initial conditions, environmental contacts and unknown parameters such as friction coefficient. This structure provides robust stability against constant delay and guarantee position and force tracking. The proposed controller employ a stable neural network in each side to approximate unknown nonlinear functions in the robot dynamics, thereby overcoming some limitation of adaptive control and guarantee good performance. An adaptation algorithm is developed to train the NN controller in order to stabilize the whole system. Furthermore, it is demonstrate that the tracking error of desired trajectory and NN weights are bounded. Simulation results show that NN controller tracking performance is superior to conventional coordination controller tracking performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.