Abstract
An adaptive neural network (NN) control is proposed for an unknown two-degree of freedom (2-DOF) helicopter system with unknown backlash-like hysteresis and output constraint in this study. A radial basis function NN is adopted to estimate the unknown dynamics model of the helicopter, adaptive variables are employed to eliminate the effect of unknown backlash-like hysteresis present in the system, and a barrier Lyapunov function is designed to deal with the output constraint. Through the Lyapunov stability analysis, the closed-loop system is proven to be semiglobally and uniformly bounded, and the asymptotic attitude adjustment and tracking of the desired set point and trajectory are achieved. Finally, numerical simulation and experiments on a Quanser's experimental platform verify that the control method is appropriate and effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.