Abstract

In this paper, an adaptive boundary controller for an undersea detection robot system with actuator failure, unknown disturbance and boundary deflection constraint is proposed. Using Hamilton’s principle, a partial differential equation (PDE) model is established for the detection system, which consists of a rigid arm, a flexible string and a sensor. Considering the actuator failure, a fault-tolerant scheme is proposed to tackle it. To handle the unknown disturbance, we employ radial basis function (RBF) neural networks (NNs) to neutralize the boundary uncertain nonlinear disturbance. The proposed adaptive controller includes a proportional–derivative (PD) feedback structure, a fault-tolerant strategy and a NN control scheme. By choosing an appropriate Lyapunov-Krasovskii function and applying LaSalle’s Invariance Principle, the asymptotic stability of the closed-loop system is rigorously proven. Simulation results validate the proposed controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.