Abstract

For human walking, the swing leg is usually modeled as a double pendulum. Considering a joint self-impact constraint at the knee joint of the double pendulum model is the main difference in this study. The primary objective of this research is to propose a nonlinear Adaptive Neural Network (ANN) for this system. By using Gaussian RBF networks, asymptotically stable tracking is attained. We will use the available data of normal human walking for the desired trajectories of the hip and knee joints. By simulation of the system, we perceive that the swing leg tracks the normal human gait with a negligible and tolerable error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.