Abstract
AbstractThis note presents a robust adaptive neural network (NN) control scheme for multi-fingered robot hand manipulation system in the constrained environment to achieve arbitrarily small motion and force tracking errors. The controllers consist of the model-based controller, the NN controller and the robust controller. The model-based controller deals with the nominal dynamics of the manipulation system. The NN handles the unstructured dynamics and external disturbances. The NN weights are tuned online, without the offline learning phase. The robust controller is introduced to compensate for the effects of residual uncertainties. An adaptive law is developed so that no priori knowledge of the bounds for residual uncertainties is required. Most importantly, the exponential convergence properties for motion and force tracking are achieved.KeywordsRobot ManipulatorRobust ControllerAdaptive Fuzzy ControlNeural Network ControllerForce TrackingThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.