Abstract

This paper is devoted to the issue of observer-based adaptive sliding mode control of distributed delay systems with deterministic switching rules and stochastic jumping process, simultaneously, through a neural network approach. Firstly, relying on the designed Lebesgue observer, a sliding mode hyperplane in the integral form is put forward, on which a desired sliding mode dynamic system is derived. Secondly, in consideration of complexity of real transition rates information, a novel adaptive dynamic controller that fits to universal mode information is designed to ensure the existence of sliding motion in finite-time, especially for the case that the mode information is totally unknown. In addition, an observer-based neural compensator is developed to attenuate the effectiveness of unknown system nonlinearity. Thirdly, an average dwell-time approach is utilized to check the mean-square exponential stability of the obtained sliding mode dynamics, particularly, the proposed criteria conditions are successfully unified with the designed controller in the type of mode information. Finally, a practical example is provided to verify the validity of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.