Abstract

The unmanned surface vessel (USV) plays an important role in smart ocean. This study proposes an adaptive fault-tolerant tracking control for USVs in the presence of input saturations and error constraints. A tan-type barrier Lyapunov function is utilised for the error constraints and the neural networks are employed to treat the model uncertainty. Moreover, the adaptive technique combined with the backstepping method not only enables the actuator fault-tolerant controller to address the fault effects but also handles the external disturbances and input saturations. The proposed control approach can track the desired trajectory with error constraints and the system is guaranteed to be uniformly bounded under certain actuator failure. Numerical simulation is carried out to verify the effectiveness of this control strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.